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Abstract: Gravitation is still taught largely in a way that suggests the existence of action at a distance. A theory without such 
shortcomings, gravitoelectromagnetism, was proposed by Heaviside in 1893 but it did not become well-established because many 
effects it describes are very small and the later emergence of general relativity seemed to make a theory of gravitoelectromagnetism 
superfluous. We argue that gravitoelectromagnetism still retains relevance in the physics curriculum because it by no means de-
scribes only tiny effects and does not demand the mathematical level of general relativity. 

 

Keywords: Gravitoelectromagnetism; energy flow in the gravitational field; mechanical stress in the gravitational field. 

1. Introduction 

 

Anyone teaching gravity who does not wish to invoke general relativity does so in essentially the way Newton formulated it. 

Newtonian mechanics originated at a time when there was no concept of physical fields and one had to be satisfied with invoking 

action-at-a-distance. Similarly, Newton did not say anything about energy for it did not yet exist as a physical quantity, and even 

after it was introduced it could not be localized; that is, it was not possible to specify an energy density and an energy current 

density until about the end of the 19th century [1]. Even today the language of energy still retains the fingerprints of its ac-

tion-at-a-distance origins: if a body is lifted, we say that the potential energy of the body increases, knowing full well that this 

energy is not stored within the body [2]. We can circumvent action-at-a-distance by speaking of a “gravitational field”, but this 

leaves unanswered questions as to its energy content, mechanical stress, and how the energy flows within the field. One does not 

typically discuss, for example, the energy density of the field or what path the energy takes from the field to a falling body. 

 

The later development of the field concept by Faraday and Maxwell in electromagnetic theory (EM) could have served as a model 

for a more modern theory of gravitation. Such a theory, Gravitoelectromagnetism (GEM), was in fact formulated by Heaviside 

and is structured in close analogy to Maxwell’s theory [3]. GEM closes the gap between Newtonian mechanics and general rela-

tivity. Like EM in vacuum, GEM operates with two field strengths. One of them is the gravitational field strength ܏, which is also 

called the gravistatic field strength and whose source is the mass density; this is analogous to the electric field strength ۳, whose 

source is the electric charge density. The other is the gravinetic field strength ܊, whose source is the mass current density; this is 

analogous to the magnetic B-field, whose source is the electric current density. We have adopted the terms gravistatic and 

gravinetic from Krumm and Bedford [4]. 

While it is common to introduce ܏ when treating gravitation, the gravinetic field strength ܊ is not usually mentioned because its 

effects are typically miniscule. As an example we consider the rotating Earth which generates a b-field and thus exerts a force on, 

say, an airplane. If we assume that an aircraft of 400 tonnes (400,000 kg) is flying at 1000 km/ h due east at the equator, this 

results in a “gravitational Lorentz force” of about 1 ߤN; that is, the aircraft effectively becomes about 0.1 mg lighter. This cal-

culation is detailed in Appendix 1. 

 

In our opinion, the smallness of GEM effects should not be an argument against introducing students to ܊. The action of the grav-

itational Lorentz force is an interesting phenomenon and gives us a better understanding of gravitation by revealing an analogy. A 
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more important reason to introduce ܊ is that it is a factor in the energy current density of the gravitational field, and here its 

effect is not at all tiny. The reason for this is that while b enters quadratically into the forces (i.e., the momentum currents), it 

enters linearly into the energy current. Thus, we believe that GEM still has merit today and that it deserves a place in the 

pedagogical curriculum. Several other authors have advocated this as well; see, for example, [4] (p. 362), [5] (p. 889), and [6] (p. 

422).  

 

In the following section we compare the equations of GEM with those of EM, and in Section 3 we explore some of the 

consequences of these differences via examples, focusing on mechanical stresses (momentum current density) and the energy 

density and energy current density of the gravitational field. Section 4 offers a few concluding remarks. 

 

It is important to point out that three years after the appearance of general relativity, Thirring showed that a 

gravitoelectromagnetic description of gravitational effects emerges by linear approximation of Einstein’s equation and for small 

velocities [7]. A comprehensive overview of the historical development of this description can be found in Iorio and Corda [8] (pp. 

2-5), and is discussed in numerous publications [8 - 11]. While the Heaviside approach is a theory in flat space and therefore 

cannot describe general relativisitc effects like gravitational waves or the Lense-Thirring effect, the Thirring approximation 

constructs GEM fields in such a way that such effects can be described locally. One recognizes that these are two different theo-

ries by the fact that according to Thirring's theory a factor of 4 occurs in the "Lorentz force" equation which also propagates into 

the energy current density (Poynting vector). In contrast, this factor does not exist in the Heaviside theory, which we explore. 

 

As this paper was being finalized for publication, we became aware of another paper to be published in this journal which exam-

ines energy flows in gravitational fields from a Newtonian perspective where fields respond instantly to the motions of charges 

and masses, an approach which contrasts with to our formulation [12]. Curiously, both approaches are able to explain energy 

flows. We encourage readers to examine both papers for a full picture of this historically important issue. 

2. The equations 

 

Below we compile the most important equations of EM and GEM, beginning with the four Maxwell equations and their GEM 

analogues. These are followed by expressions for the energy density, the energy current density, the force (momentum current), 

and the mechanical stress (momentum current density). In the case of EM the force is the Lorentz force and the energy current 

density is the Poynting vector. 

Maxwell’s equations (EM, GEM): ∇ ∙ ۳ =
଴ߝ1 ∇ ொ (1)ߩ ∙ ܏ = − ୥ߝ1 ∇ ௠ (5)ߩ ∙ ۰ = 0 (2) ∇ ∙ ܊ = 0 (6) ∇ × ۳ = ݐ۰߲߲−  (3) ∇ × ܏ = ݐ߲܊߲−  (7) 

∇ × ۰ = ொܒ଴ߤ +
1ܿଶ ∙ ݐ∂۳∂  (4) ∇ × ܊ = ௠ܒ୥ߤ− +

1ܿଶ ∙  (8) ݐ∂܏∂

Energy densities (ED, GEM): ߩா =
଴ߝ
2
۳ଶ (9) ߩா = ୥ߝ−

2
 ଶ (11)܏

ாߩ =
1

ாߩ ଴۰ଶ (10)ߤ2 = − 1

୥ߤ2  ଶ (12)܊
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Energy current densities (ED, GEM): ܁ =
଴ߤ1 ۳ × ܁ (13) ۰ = − ୥ߤ1 ܏ ×  (14) ܊

Forces (momentum currents) (ED, GEM): ۴ = ܳ(۳ + ܞ × ۰)  (15) ۴ = ܏)݉ + ܞ × (܊  (16) 

Mechanical stresses in the direction of the field lines (ED, GEM):  ߪ∥ =
଴ߝ
2
۳ଶ (17) ߪ∥ = ୥ߝ−

2
 ଶ (19)܏

∥ߪ =
1

∥ߪ ଴۰ଶ (18)ߤ2 = − 1

୥ߤ2  ଶ (20)܊

Mechanical stresses perpendicular to the field lines (ED, GEM): ୄߪ = ଴ߝ−
2
۳ଶ (21) ୄߪ =

୥ߝ
2
 ଶ (23)܏

ୄߪ = − 1

ୄߪ ଴۰ଶ (22)ߤ2 =
1

୥ߤ2  ଶ (24)܊

We have used the abbreviations: ߝ୥ =
1

୥ߤ and  ܩߨ4 =
ଶܿܩߨ4  

We have written the mechanical stresses [Eqs. (17) – (24)] separately for a purely electric (or gravistatic) field and a purely 

magnetic (or gravinetic) field in both the direction of the field lines and transversely to them. These expressions follow as special 

cases from the stress tensor given in Appendix 2.  

 

Merely considering the signs of the various quantities reveals some interesting qualitative differences between EM and GEM. In 

the following section we examine the consequences of the opposite sign of the mechanical stresses and the energy density and 

then consider the energy current density distribution in some examples. 

 

3. Consequences 

3.1 Mechanical stress in the gravitational field – momentum current density 

When treating gravitation we usually emphasize that an essential difference between gravitation and electricity is that while there 

are “two kinds” of electricity there is only one “kind” of mass, which we take as positive. Positive masses attract each other while 

like electrical charges repel each other. However, these categories of attraction and repulsion imply action-at-a-distance physics, 

whereas we want here to formulate the differences between gravitation and electricity via the properties of fields.  

Equations (17) – (24) tell us that the signs of the stress within gravistatic and gravinetic fields are opposite to those of 

electromagnetic fields, a fact originally pointed out by Heaviside [3]. In EM fields there is tensile stress in the direction of the 

field lines and compressive stress orthogonal to the field lines [13]; in gravitational fields there is compressive stress in the 

direction of the field lines for both the ܏ and ܊-fields and tensile stress transverse to them. Because mechanical stresses are 

equivalent to momentum current densities, we can say that for analogous arrangements of the sources of the fields, the flow 

direction of momentum currents in GEM fields is opposite to that in corresponding EM fields [14]. With this in mind, we consider 

the distribution of mechanical stress for a simple geometry, first in the electric case and then in the gravitational one.  
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Our system is a hollow sphere bearing a uniformly distributed positive charge as sketched in Figure 1(a). The interior of the 

sphere is known to be free of field. If the sphere is made of an elastic material, it will inflate when charged. The traditional ac-

tion-at-a-distance description is that the charges on the surface repel each other. A problem with such a description is that the 

straight lines connecting the “repulsing” parts of the surface have to run through the field-free interior. A physically better de-

scription would be: “The field is under tensile stress in the direction of the field lines. The field lines end on the surface of the 

sphere and the tension is passed on to the sphere, with the result that the electric field pulls outward on the sphere.” 

 

 

 
 

(a) (b) 

Fig. 1. (a) The electric field pulls outward on the sphere. (b) If the sphere is compressed while the charge is held constant, new 

field is created. For this, energy has to be supplied to the system. 

 

Now for the gravitational analogue. Consider a thin spherical shell of mass  as sketched in Figure 2(a). As in the electric ex-

ample, its interior is field-free. Since positive masses attract each other, the shell would shrink, but it is prevented from doing so 

because it is made of solid material. In terms of fields, we should regard the gravitational field as pushing on the shell from the 

outside. 

 

Similar statements can be made for the ܊-field. Instead of a hollow sphere, consider a hollow cylinder or a tube moving longitu-

dinally. The interior of the tube is field-free. Using the “Lorentz force” equation, we can conclude that the different parts of the 

tube lying on one circumference “repel” each other. In terms of fields we can express this as: the gravinetic field pulls on the tube. 

It follows that the field is under tensile stress in the direction orthogonal to the field lines. Just as in the electromagnetic analogue, 

however, the mechanical stresses in the b-field are smaller by a factor of ݒଶ ܿଶ⁄  than in the g-field, where v is the velocity asso-

ciated with the mass flow. 
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(a) (b) 

Fig. 2. (a) The gravistatic field pushes on the sphere. (b) If the sphere is allowed to shrink with the mass kept constant, new field is cre-

ated. For this, energy has to be removed from the system. 

 

3.2 Energy density 

It is easy to see that the energy density in the gravistatic field is negative. Consider first the electromagnetic case, Figure 1(a). If 

we imagine compressing the sphere while keeping the charge constant [Figure 1(b)], the field at some point outside the original 

sphere does not change. But as the sphere shrinks, new field is created in space that was previously field-free. We had to supply 

energy to create this additional field, and this energy is stored in the newly generated field. The energy density in the electric field 

is given by Eq. (9).  

Now apply the same reasoning to the sphere of mass in Figure 2. As the sphere shrinks, there is again a region of space which was 

field-free but is now occupied by a field. However, we did not have to supply energy to shrink the sphere; rather, we gained 

energy. If we stick to the idea that we can always specify an energy density, we must conclude that the field has a negative energy 

density, Eq. (11). These considerations extend to the b-field, but again the values involved are very small. 

 

3.3 Energy current density 

Whenever a body moves up or down in the gravitational field of the Earth it exchanges energy with the field, so-called potential 

energy. During such an exchange an energy current flows within the field, and this can be calculated with Eq. (14). While b enters 

quadratically into the mechanical stresses and thus into the forces, it appears to the first power in the formulae for the energy 

current density, Eq. (14). As a consequence, the b-field manifests itself much more clearly in energy currents than in forces (mo-

mentum currents).  

Figure 3 illustrates a simple example, which was proposed by Krumm and Bedford [4]. A long rod of mass m is pulled upwards, 

perpendicular to the Earth’s surface.  
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(a) (b) 

 

Fig. 3. (a) A rod is pulled from the top. In the process, energy flows within the rod from top to bottom. (b) This energy gradually 

leaves the rod sideways. 

Energy is supplied ,which enters the rod from above. The energy flow (power) at the top of the rod is calculated according to the 

classical formula ܲ = ܞ · ۴ (25) 

Here v is the velocity of the rod and F is the gravitational force whose magnitude is ܨ = ݉݃ (26) 

As the force within the rod decreases from top to bottom, the energy flow also decreases. We ask for the decrease ΔP of the ener-

gy flow in a small height interval Δh, see Figure 3a. ΔP is that part of the energy flow which is transferred from the matter of the 

rod to the gravitational field within this interval. We first write the force as a function of the height h:  ܨ = ݉(ℎ)݃ =  ℎ݃, (27)ܣ ݉ߩ

where ρm is the mass density of the rod. Thus, the energy flow through a sectional plane at the height h is: ܲ = ܨݒ =  ℎ݃. (28)ܣ ݉ߩݒ

Since the mass flow is ݉ܫ =  (29) ܣ ݉ߩݒ

the energy flow can be written as ܲ =  ℎ. (30)݃ ݉ܫ

We are interested in the decrease ΔP of the energy flow in the height interval Δh: ܲ߂ =  ℎ (31)߂݃ ݉ܫ

This energy flow exits the rod into the gravitational field. 

We now ask what our GEM equations predict for this energy flow. We calculate the energy flow ΔP' in the gravitational field 

exiting the rod through the cylindrical shell of height Δh: ܲ߂’ =  ℎܵ (32)߂ݎߨ2

To determine the energy current density S we need the gravistatic and the gravinetic field. The g-field of the rod is so weak com-

pared to that of the Earth that we need not consider it. The b-field is easily obtained from Eq. (8). Its magnitude is 

(ݎ)ܾ = ୥ߤ ௠ܫ
 (33) . ݎߨ2

Since g and b are perpendicular to each other, we get the magnitude of S from Eq. (14) as 
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ܵ =
୥ߤܾ݃  . 

(34) 

With Eq. (33) S becomes 

ܵ =
௠ܫ݃
 . ݎߨ2

(35) 

Inserting S into Eq. (32) we get ܲ߂’ = ௠ܫ  ݃  ℎ . (36)߂

which agrees with Eq. (31)  

Thus, Heaviside's theory consistently describes our local energy balance: The energy flowing away from the rod via the field is 

equal to that flowing into the rod from above. 

This result also shows that there cannot be a factor 4 in the equation for the energy flow, as is the case in the Thirring-type repre-

sentations of GEM. Apparently, the Heaviside and Thirring theories correspond to two different mappings of EM onto gravitation. 

Up to this point we have calculated only the energy current density near the surface of the rod. The question of the total current 

density distribution is more difficult because it has sinks in the field and the current density distribution extends out into areas far 

from the rod. To circumvent this problem we consider a different example, that of a heavy rope running over two pulleys. This is 

sketched in Figure 4. The rope can equivalently be imagined as water flowing in a pipe. 

 

 

Fig. 4. In the left part of the rope, the energy flows within the rope upward, in the right part downward. In the process, its current 

strength increases upwards in the left part and decreases downwards in the right part. The circuit is closed by the gravitational 

field in which the energy flows from the right to the left part of the rope. 
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Fig. 5. Energy flow corresponding to Figure 4, schematically 

To determine the path of the energy within the gravitational field we need the ܏ and ܊-fields. We again neglect the contribution 

due to the rope; the ܏-field is simply that of the Earth. The ܊-field is an old acquaintance, having the same form as that of two 

parallel wires carrying oppositely-directed currents; see Figure 6. The vector multiplication ܏ ×  is straightforward, and the ܊

streamlines of the energy flow are orthogonal to the ܊-field lines. Energy transport is largely localized to the vicinity of the two 

sections of the rope and is a large effect, well known from daily life. 

 

Fig. 6. Horizontal section through the arrangement of Figure 4. The g-field lines point into the plane of the drawing. From the 

right to the left section of the rope, the energy flows through the gravitational field. 

 

In setting up this arrangement, note that two conditions have been met: (1) The energy flux distribution has no sources or sinks 

within the gravitational field, and (2) each energy streamline runs in a plane, so the distribution can be represented in a 

cross-sectional plane. Both conditions are automatically satisfied for any closed mass flow such as an arbitrarily shaped water 

circuit or a rotating vertical wheel. 

 

4. Conclusion 

In order to avoid action–at-a-distance without using general relativity, one can describe classical gravity with fields. To do so it is 

necessary to introduce the gravinetic field b in addition to the usual g-field. This results in a theory, gravitoelectromagnetism, 

which is analogous to Maxwell’s electromagnetic theory. A striking and consequential difference between EM and 

gravitoelectromagnetism involves some reversed signs. The energy densities of both the g and b-fields are negative, and the me-

chanical stresses in the GEM field are reversed with respect to those in the EM field: compression becomes tension and vice-versa. 

Using energy density and energy flux density, the local energy balance for the gravitational field can be formulated in the context 

of gravitoelectromagnetism. In particular, the concept of potential energy can be replaced with a modern concept of energy stored 

in fields. 
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Appendix 1: Gravitational Lorentz force on an airplane 

Electromagnetic forces are much stronger than gravitational forces; for example, the electrical repulsion between two protons is 

some 1037 times stronger than their gravitational attraction. Easily observable gravitational forces result only for bodies with very 

large mass, such as the Earth. In addition, gravinetic forces are typically smaller than gravistatic forces by a factor v1 · v2 /c2, 

where v1 and v2 are the velocities of the interacting bodies.  

To get an idea of the magnitude of gravinetic forces, consider an airplane of 400 tonnes (400,000 kg)  flying eastward above the 

equator. The surface of the earth is also moving in the eastward direction. So we have what can be compared to two electric cur-

rents flowing parallel to each other in the same direction. The corresponding conductors or charge carriers are known to attract 

each other.  

To solve the plane problem, we would have to calculate the gravinetic field of a rotating sphere but that is mathematically quite 

complicated. However, since we are only interested in the order of magnitude of the effect, we map this problem onto the geome-

try of a charge moving parallel to the axis of a current-carrying wire. We replace the rotating Earth with a massive cylinder 1000 

km in diameter moving along its symmetry axis. To calculate the mass flow, we also need the density of the cylinder, which we 

take to be ฀ = 4 x 103 kg/m3. As the speed we choose the speed of the surface of the Earth, i.e. about 1700 km/h. The airplane flies 

at speed 1000 km/h relative to the Earth, so as “seen from outside”, i.e. in an inertial frame in which the center of the Earth is at 

rest, the velocity of the plane is 2700 km/h = 750 m/s. We assume a flight altitude of 10 km.  

We obtain a mass current Im of the passing cylinder of about 1.5 x 1018 kg/s. Setting r = 5.1 x 105 m and g = 4G/c
2 in Eq. (33) 

gives a b-field strength of ~ 4.3 x 10-15 s-1. With v = 750 m/s, the magnitude of the corresponding force from Eq. (16) is then F = 

mvb ~ 1.3 x 10-6 Newtons. The direction of the force is away from the cylinder, effectively lightening the plane by about 0.1 mg. 

 

 

Appendix 2: The Maxwell stress tensor and its GEM analogue 

The expressions given in the text for the compressive and tensile stresses in the electromagnetic field can be summarized in a 

single tensor equation, the well-known Maxwell stress tensor: 

௜ܶ௝ = ௝ܧ௜ܧ଴ߝ +
଴ߤ1 ௝ܤ௜ܤ − ൬ߝ଴2 ۳ଶ +

1

଴۰ଶ൰ߤ2  ௜௝. (A1)ߜ

The analog gravitoelectromagnetic tensor is: 

௜ܶ௝ = ୥݃௜݃௝ߝ− − ୥ߤ1 ܾ௜ ௝ܾ + ቆߝ୥
2
ଶ܏ +

1

୥ߤ2  ௜௝ (A2)ߜଶቇ܊

Comparison of equations (A1) and (A2) shows that compressive and tensile stresses are swapped. From equation (A2) one can 

directly read our equations (19) and (20) as well as (23) and (24), and, just as in the electromagnetic case, derive the Lorentz force 

equation. 
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